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1. Introduction

It is an experimental fact that Nature comes to us with many scales, and that we do not

need to understand them all at once in order to understand the physics of any particular

scale. Indeed, progress on atomic physics did not have to await a complete theory of nuclei,

quarks or any hitherto-undiscovered more microscopic constituents, and this fact arguably

is fundamental to the very possibility of making progress in science. This elementary

physical fact is reflected in the mathematics used to describe the physical world — quantum

field theory — through the calculus of renormalization and effective field theories.

Although low-energy physics is largely insensitive to higher energy scales, it is not

completely so. After all, the electronic properties of atoms do depend on the total charge
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and mass of the underlying nucleus. The calculus of renormalization, which has become

very well-developed over the last few decades, allows the very efficient calculation of the

comparatively few ways in which short-distance high-energy physics can affect the physics of

longer wavelengths and lower energies. It does so by identifying the low-energy effective field

theory which captures the effects of integrating out high-energy modes, and in particular

finding which effective interactions are ‘Ultraviolet (UV) Sensitive’ inasmuch as they are

proportional to positive powers of the large energy scale, m, of the particles which have

been integrated out [1, 2]. It is this existence of UV sensitive terms in the low-energy

effective action which underlies the ‘naturalness’ problems of otherwise-successful theories

like the Standard Model, including the problems of the Electroweak Hierarchy or of the

Cosmological Constant.

Although the techniques for computing UV sensitive interactions is very highly devel-

oped for four-dimensional theories, less has been done to compute such terms in higher-

dimensional models. The absence of such higher-dimensional results is becoming more of

a hindrance given that extra-dimensional ideas are playing an increasingly prominent role

in our understanding of the various hierarchy problems [3 – 5]. Fortunately, well-developed

heat-kernel techniques exist for computing UV sensitivity for reasonably general geome-

tries [6], and it is the purpose of this paper to use these techniques to provide a systematic

calculation of the leading sensitivity to heavy masses (within the one-loop approximation)

in higher-dimensional theories.

In order to do so we compute the most UV sensitive contributions which are obtained

when massive particles are integrated out at one loop. We calculate the leading heat-kernel

coefficients for n spacetime dimensions and for a broad class of particle spins, including

most particle types which arise within the higher-dimensional supergravities which are of

the most modern interest. Similar heat-kernel calculations have been performed in the

past for massless particles [8 – 10], and more recently for certain massive fields in 4D [11].

The results presented herein extend these earlier calculations in several ways. Our main

extension is to provide the n-dimensional results for massive fields rather than massless

ones, including calculating the contributions of the various ghosts and would-be Goldstone

particles which participate in the generalized higher-spin mass-acquisition (Higgs) mech-

anisms. As an intermediate step we also compute the leading heat-kernel coefficients for

massless particles, extending previous general results to include a nonzero cosmological

constant in n-dimensions. An application of these results to the study of UV sensitivity in

Ricci-flat 4D compactifications of 6D supergravity may be found in ref. [12].

Our calculations are presented as follows. The next section 2, summarizes the general

heat-kernel formulae and evaluates them for the various massless fields which arise within

higher-dimensional supergravities. These calculations are performed in a covariant gauge,

for which the gauge-fixing and ghost contributions are explicitly displayed. For higher-spin

fields the generalizations to nonzero masses are computed by coupling the massless fields

to the appropriate would-be-Goldstone fields, whose eating makes up the generalized Higgs

mechanism for the fields of interest. Section 3 then applies the general results of section 2

to the field content of specific supergravities. As a check, and in order to compare with

previous results, the contributions of the massless fields of 10- and 11-dimensional super-
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gravities are computed and shown to sum to zero, in agreement with earlier calculations.

The contributions of massive fields and supermultiplets in 4, 6 and 10 dimensions are also

tabulated in this section.

2. General one-loop results

This section collects the results for the most ultraviolet-sensitive parts of the one-loop action

obtained by integrating out massless and massive particles having spins up to and including

spin two. For the present purposes we take the one-loop approximation to represent the

field theory which is obtained by linearizing the various field equations about a particular

background configuration. That is, denoting the set of (real) quantum fields generically by

Φi, with background value ϕi, we write Φi = ϕi + φi and expand the classical action to

quadratic order in φi:

S ≈ − 1

2

∫

dnx φi ∆ij(ϕ)φj . (2.1)

Here n denotes the dimension of spacetime, and in practice we consider nonzero back-

grounds only for scalar, gauge and gravitational fields. We do, however, allow fluctua-

tions about these backgrounds for all of the most commonly encountered fields in higher-

dimensional supergravity theories.

2.1 The Gilkey-DeWitt coefficients

The full one-loop quantum correction to the effective action, Σ, in the presence of various

background fields can be explicitly calculated provided one can evaluate the functional

determinant of the relevant differential operator in the presence of those backgrounds.

For a basis of real fields, φj, whose linearized equation of motion is ∆i
j φj the one loop

contribution to the effective action is

iΣ = −(−)F
1

2
Tr log ∆ , (2.2)

where F denotes the fermion number of these fields (which is odd for fermions and even

for bosons). Unfortunately the evaluation of the right-hand side of this expression is in

general quite difficult, and explicit results are typically known only for background fields

which are sufficiently simple.

Calculations are easier if one is only interested in those parts of Σ which are the most

sensitive to very short-distance physics. In this case very general results can be obtained by

using the Gilkey-DeWitt heat-kernel methods. For instance, the parts of Σ which depend

the most strongly on the mass matrix, m, (in the limit that the eigenvalues of m are large)

can be written as

ΣUV =
1

2
(−)F

(

1

4π

)n/2 ∫

dnx
√−g

[n/2]
∑

k=0

Γ(k − n/2) tr[mn−2k ak] (2.3)

where g is the determinant of the metric, Γ(z) is Euler’s gamma function and n is the

number of spacetime dimensions. The ak are local quantities constructed from k powers
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of the background curvature tensor, as well as of the other background fields. We stop

the sum at k = [n/2] — where [n/2] denotes the largest integer which is ≤ n/2 — since

our interest is only in those terms which do not involve negative powers of m. Although

all [n/2] coefficients ak are required to completely describe the UV properties of an n-

dimensional theory, for practical reasons we calculate here only the first three (the number

of terms in each ak increases exponentially with n, c.f. eqs. (2.5) and (2.6)). Potential ultra-

violet divergences in this expression are regulated by taking n to approach continuously

the integer value of interest.

Very general explicit expressions for the first few ak are known in some circumstances.

Consider, for example, N real fields, φi, whose field equation when linearized about the

background configuration is

∆i
jφ

j = (−¤ + m2 + X)ijφ
j = 0 , (2.4)

where ¤ = gMNDMDN is constructed from background-covariant derivatives, DM , and

the quantity Xi
j is a local background-field dependent quantity. Using the heat kernel

expansion, it is possible to show that the first few ak, are given by:1

a0 = I

a1 = −1

6
(RI + 6X)

a2 =
1

360

(

2RMNPQRMNPQ − 2RMNRMN + 5R2 − 12¤R
)

I

+
1

6
RX +

1

2
X2 − 1

6
¤X +

1

12
YMNY MN (2.5)

and

a3 =
1

7!

(

−18¤2R + 17DMRDMR − 2DLRMNDLRMN − 4DLRMNDNRML

+9DKRMNLP DKRMNLP + 28R¤R − 8RMN¤RMN + 24RM
NDLDNRML

+12RMNLP ¤RMNLP − 35

9
R3 +

14

3
R RMNRMN − 14

3
RRMNPQRMNPQ

+
208

9
RM

N RML RNL − 64

3
RMN RKL RMKNL +

16

3
RM

N RMKLP RNKLP

−44

9
RAB

MN RABKL RMNKL − 80

9
RA M

B N RAKMP RBKNP

)

I

+
1

360

(

8DMYNK DMY NK + 2DMYNM DKY NK + 12Y MN
¤YMN

−12Y M
N Y N

K Y K
M − 6RMNKL YMN YKL + 4RM

N YMK Y NK

−5R Y MN YMN − 6¤2X + 60X¤X + 30DMX DMX − 60X3

−30X Y MN YMN + 10R ¤X + 4RMN DMDNX + 12DMR DMX − 30X2 R

+ 12X ¤R − 5X R2 + 2X RMNRMN − 2X RMNPQRMNPQ

)

, (2.6)

1Our metric is ‘mostly plus’ and we adopt Weinberg’s curvature conventions [13] (which differ from those

of Misner Thorne and Wheeler [14] only in the overall sign of the curvature tensors).
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where I is the N × N identity matrix for the space of fields of interest, and YMN is the

matrix-valued quantity defined by the expression YMN
i
j φj = [DM ,DN ]φi. YMN may be

expressed explicitly in terms of the Riemann tensor and any background gauge fields, Aa
M ,

as:

YMN = −iF a
MN ta −

i

2
R AB

MN JAB , (2.7)

where ta and JAB are the field-appropriate matrices which generate gauge and Lorentz

transformations, and F a
MN is the background gauge field strength. In particular, for

canonically-normalized gauge bosons, we take the gauge group generators to include a fac-

tor of the corresponding gauge coupling, ga. Here we use indices A,B, . . . for the tangent

frame, M,N, . . . for world indices and lower-case indices to label gauge-group generators.

Notice that there is an ambiguity in how the mass, m, enters into the above expressions,

because the two quantities X and m2 only enter through their sum: X + m2. As a

consequence there are two ways to use these formulae. On the one hand, one can lump

the physical mass into X and regard the explicit m dependence of eq. (2.3) as being an

infrared regulator which is taken to zero at the end of the calculation. In this case only

the term with k = n/2 survives and the m dependence of Σ is completely contained within

the X dependence of an/2. Alternatively one can exclude m2 from X, in which case the

large-m dependence of Σ is explicit in eq. (2.3).

We may use the equivalence of these two points of view to derive an identity which

relates the Gilkey coefficients for X to those for X + m2. The simplest way to do so is to

compute the divergent part of eq. (2.3) using the result Γ(−k + ε) = (−)k/(k!ε) + · · · , for

ε an infinitesimal and k a non-negative integer. For odd n this leads to the old one-loop-

finiteness result at one loop in dimensional regularization [15]. For even n, comparing the

result for the coefficient of 1/ε with and without including m2 in X leads to the following

identity:

tr[an/2(X + m2)] =

n/2
∑

k=0

(−)k−n/2

(n/2 − k)!
tr[mn−2kak(X)] . (2.8)

For instance, for n = 4 and n = 6 this reduces to

tr[a2(X + m2)] = tr[a2(X)] − tr[m2a1(X)] +
1

2
tr[m4a0(X)] (2.9)

tr[a3(X + m2)] = tr[a3(X)] − tr[m2a2(X)] +
1

2
tr[m4a1(X)] − 1

6
tr[m6a0(X)] ,

which may be verified using the explicit expressions of eq. (2.5).

These formulae show that the coefficient of the leading power of m can be computed

by evaluating the first few coefficients, ak, without including m explicitly into the quantity

X. Provided that the contributions of the would-be Goldstone bosons and ghosts all share

the same m (as we show in detail below) we may obtain the results for massive fields by

summing appropriate results for massless fields.

We now use this approach to evaluate the first few coefficients, tr(ak) (k = 0, 1, 2), in

n spacetime dimensions for particles having spin zero, one-half, one, three-halves and two,

as well as for the rank-two antisymmetric gauge potential which appears in supergravity

– 5 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
8

models. Although our real interest is to applications with massive fields, we provide the

results for massless fields which are required as intermediate steps in the calculation.

2.2 Spin 0

The lagrangian for a set of N0 real scalar fields, denoted collectively by φ, is given by

1

e
L0 = −1

2
φ(−¤ + m2 + ξR)φ (2.10)

where in general both m2 and ξ are arbitrary constant N0 × N0 matrices, and as usual

e =
√−g. We here assume for simplicity that m2 and ξ commute with one another, so

a basis of fields exists for which both are diagonal. A case of particular interest is the

massless, minimally-coupled case, ξ = m2 = 0, such as would be enforced by a Goldstone-

boson symmetry φ → φ+ constant. Alternatively, the case m2 = 0 and

ξ = − (n − 2)

4(n − 1)
I (2.11)

describes a conformally-invariant coupling for all N0 scalars.

For scalars we have YMN = −iF a
MN ta, where ta is the gauge-group generator acting

on the scalars of any background gauge group, under which the scalars are assumed to

transform in a representation R0. If this representation contains N0 real scalars, then we

have tr(I) = N0. For X = ξR we find

tr0(a0) = N0

tr0(a1) = −
(

tr ξ +
N0

6

)

R

tr0(a2) =
N0

180

[

RMNPQRMNPQ − RMNRMN
]

+
1

2
tr

[

(

ξ +
1

6

)2
]

R2

−1

6
tr

(

ξ +
1

5

)

¤R − g2
a

12
C(R0)F

a
MNFMN

a . (2.12)

Here tr ξk = N0 ξk
0 if all scalars share the same coupling to R (i.e. if ξ = ξ0 I), and

tr[tatb] = g2
a C(R0) δab, where C(R0) is the Dynkin index for the scalar representation R0.

(Our normalization is such that C(F ) = k/2 or C(A) = Nk, respectively, for k fields in

the fundamental or adjoint representations of SU(N).)

2.3 Spin 1/2

We take the lagrangian for N1/2 spin-half particles to be

1

e
L1/2 = −1

2
ψ( /D + m)ψ , (2.13)

where /D = ΓMDM with ΓM denoting the d × d Dirac matrices in n dimensions. In n

dimensions d = 2[n/2] where [n/2] is the largest integer which is less than or equal to n/2.

Since different kinds of spinors are possible in different spacetime dimensions, it proves
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useful to define a new quantity, d̃ = 2d/ζ, where the pre-factor of 2 comes because we

count real fields, and ζ = 1, 2, or 4 depending on whether the spinors in question are

Dirac, Majorana or Weyl, or Majorana-Weyl.2

In order to put the operator ∆ into a form for which eq. (2.5) applies, we use the fact

that (assuming there are no gauge or Lorentz anomalies) log det( /D + m) = 1
2 log det(m2 −

/D2), which implies

iΣ1/2 =
1

4
Tr log

(

m2 − /D2
)

=
1

4
Tr log

(

−¤ + m2 − 1

4
R +

i

2
ΓABF a

ABta

)

, (2.14)

where we use the spin-half result JAB = − i
2ΓAB, with ΓAB = 1

2 [ΓA,ΓB ]. Thus, we see that

eq. (2.5) may be applied if we use X = −1
4R I + i

2ΓABF a
ABta, and divide the overall result

by 2 (because of the extra factor of 1/2 in eq. (2.14) relative to eq. (2.2)). Here I denotes

the N1/2 ×N1/2 unit matrix, with N1/2 = N1/2d̃.

Using eq. (2.7), we find in this way

tr
(

YMNY MN
)

= −d̃ g2
a C(R1/2)F

a
MNFMN

a − 1

8
N1/2RMNPQRMNPQ . (2.15)

This leads to the following values for ak:

tr1/2(a0) =
N1/2

2

tr1/2(a1) =
N1/2

24
R

tr1/2(a2) =
N1/2

360

[

−7

8
RMNPQRMNPQ − RMNRMN +

5

8
R2 +

3

2
¤R

]

+
d̃g2

a

12
C(R1/2)F

a
MNFMN

a . (2.16)

2.4 Spin 1

For spins higher than 1/2 the massless and massive cases must be handled separately, due to

the different number of spin states which are involved in these two cases. This is also related

to the need for gauge symmetries for these higher spins [17], and the possibility of mixing

between higher-spin and lower-spin fields (i.e. the Anderson-Higgs-Kibble mechanism). In

order to be explicit we first present the massless case.

Massless spin 1. We start by dividing the total gauge field into a background compo-

nent, Aa
M , and a fluctuation, Aa

M , according to aa
M = Aa

M + Aa
M . In terms of these fields

the gauge field strength for the full field, aa
M , becomes

fa
MN = F a

MN + DMAa
N − DNAa

M + ca
bc Ab

MAc
N , (2.17)

2For a discussion on the allowed spinors in spacetimes of arbitrary dimension and signature, see for

example [16].
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where DM is the background covariant derivative built from the background gauge con-

nection, Aa
M , and Christoffel symbol, and as before F a

MN is the background field-strength

tensor. As usual, the fluctuation, Aa
M , is chosen to transform in the adjoint represen-

tation under background gauge transformations — and so (ta)bc = −icabc — as well as

transforming as a vector under background coordinate transformations.

It is convenient to fix the spin-1 gauge invariance using a background-covariant gauge-

averaging term,
1

e
L gf

V = − 1

2ξ1
(DMAa

M )2, (2.18)

where DM denotes the background-covariant derivative built from the background gauge

field and Christoffel symbols. Then expanding the gauge-field lagrangian,

1

e
(LV + L gf

V ) = −
[

1

4
fa

MNfMN
a +

1

2 ξ1
(DMAa

M )2
]

, (2.19)

to second order in Aa
M and choosing the background-covariant Feynman gauge (ξ1 = 1),

the part of the lagrangian which is quadratic in the fluctuations, LA, becomes

1

e
LA = −1

2
AM

a

[

−¤gMNδab − Y ab
MN + c ab

c F c
MN

]

AN
b , (2.20)

where as before [DM ,DN ]AaN = Y ab
MN AN

b .

For a vector field the Lorentz generators are (JAB)CD = −i(δA
CδB

D − δA
DδB

C ), and so

we see that [DM ,DN ]AN
b = RMNAN

b − iF a
MN (ta)

c
b AN

c . The one-loop contribution due to

vector loops is then given by:

iΣV = −1

2
log det

[

∆M a
N b

]

= −1

2
log det

[

−¤ δM
Nδa

b − RM
Nδa

b + 2iF cM
N (tc)

a
b

]

. (2.21)

We can now see that XM a
N b = −ηRM

Nδa
b +2i(tc)

a
bF

cM
N , where η = ±1 is a useful constant

to include for later purposes. For the case considered here we see that η = 1, whereas when

we consider the ghosts associated with spin-2 particles we will find that η = −1.

For N1 vector fields, we therefore find that trV (X) = −ηN1R and trV (X2) =

N1RMNRMN + 4g2
a C(A)F a

MNFMN
a , where C(A) is the Dynkin index for N1 fields

in the adjoint representation. Similarly, trV (YMNY MN ) = −N1RMNPQRMNPQ −
ng2

a C(A)F a
MNFMN

a and trV (I) = nN1. These imply the following results for vector fields

in n spacetime dimensions:

trV (a0) = nN1

trV (a1) =
(

η − n

6

)

N1R

trV (a2) =
N1

360

[

(2n − 30)RMNPQRMNPQ + (180 − 2n)RMNRMN + (5n − 60η)R2

+(60η − 12n)¤R
]

+
g2
a

12
(24 − n)C(A)F a

MNFMN
a . (2.22)
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Since we work in a covariant gauge, to this result must be added the contributions of

the ghosts. For the gauge chosen, the gauge fixing condition fa = DMAa
M varies under

gauge transformations according to δfa = ¤ εa. Consequently, the lagrangian for the gauge

ghosts is
1

e
LV gh = −ω∗

a(−¤ )ωa , (2.23)

where the ωa are complex fields obeying Fermi statistics. Since this has the same form

as the spin zero lagrangian discussed above (specialized to ξ = 0), for the ghosts we may

simply adopt the spin-0 results for the ak, with N0 → N1 and multiplied by an overall

factor of −2.

Adding the results for vector fields (η = +1) and ghosts gives the contribution of

physical spin-1 states. Thus, we obtain for massless spin-1 particles:

tr1(a0) = N1(n − 2)

tr1(a1) =
N1

6
(8 − n)R

tr1(a2) =
N1

180

[

(n − 17)RMNPQRMNPQ + (92 − n)RMNRMN
]

+
N1

72
(n − 14)R2

+
N1

30
(7 − n)¤R +

g2
a

12
(26 − n)C(A)F a

MNFMN
a . (2.24)

Massive spin 1. If the gauge symmetry is spontaneously broken by the expectation of

a scalar field, 〈φi〉 = vi, then the previous discussion is complicated because the part of

the lagrangian quadratic in fluctuations acquires cross terms between the vector and scalar

fields of the form Aa
M ta∂

Mφ. These terms reflect the physical process whereby the spin-1

particles acquire masses by absorbing the scalar fields through the Anderson-Higgs-Kibble

mechanism.

In this case the same analysis as above can be performed provided we average over a

more general gauge condition: fa = DMAa
M +c v ·taφ, with the constant c chosen to remove

the cross terms between Aa
M and ∂Mφ. This simply results in the addition of the same

mass matrix µ2 to the differential operator ∆ = −¤+X for the vector fields and the ghost

fields. This process also results in the would-be Goldstone bosons (i.e. the scalar fields

which mixed with the gauge fields) acquiring the same mass matrix, µ2 as also appears in

the vector-field and ghost actions [18].

The upshot for massive spin-1 particles is therefore to add the result for N1 massless

spin-1 particles to that of N1 massless scalar fields, with ξ = 0. This leads to the following

contributions if the mass µ2, is not included in X:

tr1m(a0) = N1(n − 1)

tr1m(a1) =
N1

6
(7 − n)R

tr1m(a2) =
N1

180

[

(n − 16)RMNPQRMNPQ + (91 − n)RMNRMN
]

+
N1

72
(n − 13)R2

+
N1

30
(6 − n)¤R +

g2
a

12
(25 − n)C(A)F a

MNFMN
a . (2.25)
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2.5 Antisymmetric tensors

We next consider in detail the antisymmetric rank-2 gauge potential, BMN , which appears

in supergravity models. As before we first treat the massless case, and then move on to

massive particles. We also quote the results for massless antisymmetric tensors of arbitrary

rank, as taken from ref. [10].

Massless antisymmetric tensors. The appropriate lagrangian for this field is

1

e
LB = − 1

12
HMNP HMNP , (2.26)

where HMNP = D[MBNP ] = 2(DMBNP + DNBPM + DP BMN ), and to this we add

the gauge-fixing term 1
e L

gf
B = − 1

2ξB
(DMBMN )2. Choosing the gauge parameter to be

ξB = 1/4, we obtain the lagrangian

1

e
(LB + L gf

B ) = −BMN

(

−¤ δ
MN
PQ + 2R M N

P Q − 2RM
P δN

Q

)

BPQ. (2.27)

Here, δ
MN
PQ = 1

2(δM
P δN

Q − δM
Q δN

P ) is the appropriate identity matrix for a rank-2 antisym-

metric tensor. The differential operator which possesses the correct symmetries for this

field is thus seen to be

∆MN
PQ = −¤ δ

MN
PQ + (RM N

P Q − RN M
P Q) − 1

2
(RM

P δN
Q − RN

P δM
Q + RN

Q δM
P − RM

Q δN
P ), (2.28)

and so

XMN
PQ = (RM N

P Q − RN M
P Q) − 1

2
(RM

P δN
Q − RN

P δM
Q + RN

Q δM
P − RM

Q δN
P ). (2.29)

Similarly YMN is given by

(YMN )AB
CD =

1

2
(RA

CMNδB
D ∓ RA

DMNδB
C + RB

DMNδA
C ∓ RB

CMNδA
D), (2.30)

where for later convenience we also give here the result (bottom sign) for the rank-2 sym-

metric tensor field.

Using these expressions for X and YMN , and taking there to be Na such antisymmetric

gauge potentials, we obtain

trB(X) = Na(2 − n)R

trB(X2) = Na

[

RMNPQRMNPQ + (n − 6)RMNRMN + R2
]

trB(YMNY MN ) = Na(2 − n)RMNPQRMNPQ , (2.31)

and so are led to the following results for tr(ak):

trB(a0) =
Na

2
n(n − 1)

trB(a1) = −Na

12
(n2 − 13n + 24)R
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trB(a2) = Na

[

1

360
(16 − n)(15 − n)RMNPQRMNPQ

− 1

360
(n2 − 181n + 1080)RMNRMN +

1

144
(n2 − 25n + 120)R2

− 1

60
(n2 − 11n + 20)¤R

]

. (2.32)

To these expressions must be added the contributions of the ghosts. The antisymmetric

tensor gauge transformations are δBMN = DMΛN−DNΛM , where ΛM is itself only defined

up to a gauge transformation: ΛM → ΛM +DMΦ. We therefore average over the secondary

gauge-fixing condition f = DMΦM , where DM is the appropriate background-covariant

derivative. Introducing ghosts and ghost-for-ghosts for these symmetries, we acquire the

ghost counting of ref. [19], which states that each initial tensor gauge potential gives rise to

a complex, fermionic vector ghost, ωM , and three real, scalar, bosonic ghosts-for-ghosts,3

φi. Their lagrangians are given by

1

e
LBV gh = −ω∗

M (−¤δM
N − RM

N )ωN ,

1

e
LBSgh = −1

2
φi(−¤)φi . (2.33)

The contributions of the vector ghosts to ak is therefore obtained by replacing N1 → −2Na

in the result given above for vector fields (with η = +1). Similarly, the scalar ghosts are

obtained from the spin-0 result quoted above, with the replacements N0 → 3Na and ξ → 0.

Summing the contribution of the rank-2 tensor and its ghosts leads to the following

expression for the physical massless particles associated with these antisymmetric tensor

fields:

tra(a0) =
Na

2
(n − 2)(n − 3)

tra(a1) = −Na

12
(n2 − 17n + 54)R

tra(a2) =
Na

360

[

(n2 − 35n + 306)RMNPQRMNPQ − (n2 − 185n + 1446)RMNRMN
]

+
Na

144
(n2 − 29n + 174)R2 − Na

60
(n2 − 15n + 46)¤R . (2.34)

Massive particles. The particles associated with antisymmetric tensor fields can also

acquire mass through an Anderson-Higgs-Kibble mechanism, in which the antisymmetric

tensor particle ‘eats’ an ordinary gauge field, VM [20]. As before, a modification of the gauge

choice is required in this case in order not to have mixing terms of the form BMN∂MVN .

As we now show, the contribution of each massive tensor particle is given by adding the

above result for a massless particle to the result for an η = +1 massless abelian — so with

C(A) = 0 — gauge field (including its ghosts).

3The reason we do not obtain four scalar ghosts, as a naive ghost counting would imply, has to do with

the fact the gauge-fixing function GN = D
M

BMN satisfies the constraint D
N

GN = 0. A more detailed

discussion of this point can be found in [19].
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To demonstrate this explicitly, we start with the lagrangian

1

e
LmB = − 1

12
HMNP HMNP − 1

4
(VMN − 2m BMN )2, (2.35)

where VMN = DMVN − DNVM is the field strength of the abelian gauge field VM , and m

is a constant with dimensions of mass. This lagrangian is invariant under

δBMN = DMΛN − DNΛM

δVM = 2m ΛM + 2 ∂Mσ, (2.36)

where ΛM and σ are arbitrary gauge parameters. As in the massless case, this set of gauge

transformations is itself invariant under a gauge transformation,

δΛM = ∂M ε

δσ = −m ε , (2.37)

for an arbitrary function ε. As before, therefore, we find that the ghosts themselves have

ghosts. Note that in the limit m → 0 the lagrangian decouples into the lagrangian for a

massless antisymmetric tensor and a massless vector.

To fix the two gauge freedoms in eq. (2.36), and to remove unwanted mixing terms,

we add to the lagrangian the gauge-fixing term

1

e
L gf

mB = −2
(

DMBMN − m

2
VN

)2
− 1

2

(

DMVM

)2
. (2.38)

After adding this term to eq. (2.35) we find

1

e
(L + L gf

mB) = −BMN(∆MN
PQ + m2 δ̄MN

PQ )BPQ − 1

2
VM (∆M

N + m2 δM
N )V N , (2.39)

where ∆ is the differential operator appropriate for the field it operates on; specifically,

∆M
N = −¤ δM

N − RM
N , and ∆MN

PQ is given by eq. (2.28).

The lagrangian for the ghosts is obtained by varying the gauge-fixing conditions ap-

pearing in eq. (2.38), and we thus find

LmBgh = −ξ∗N(−¤δN
M + DMDN + m2δN

M ) ξM − ω∗(−¤)ω

−m ξ∗MDMω + m ω∗DMξM . (2.40)

Here, ξM and ω are the ghost fields associated with ΛM and σ, respectively. To fix the

gauge freedom implied by eq. (2.37), we add to the ghost lagrangian the term

L gf
mBgh = −(DMξM + mω)

∗
(DN ξN + mω) (2.41)

and so we find

LmBgh + L gf
mBgh = −ξ∗N

[

(−¤ + m2)δN
M + RN

M

]

ξM − ω∗(−¤ + m2)ω. (2.42)

Notice that the complex scalar ghost, ω, combines with the vector, VN , to form the field

content of a physical massless spin-1 particle.
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The ghosts-for-ghosts lagrangian is similarly obtained, and as in the massless case we

find three bosonic scalar ghosts-for-ghosts, with lagrangian

LmBSgh = −1

2
φi(−¤ + m2)φi . (2.43)

Except for the presence of mass terms, the lagrangian for a massive antisymmetric tensor

is therefore the sum of a massless spin-1 lagrangian and a massless antisymmetric tensor

lagrangian (including their ghosts). Thus, in calculating the ak for a massive antisymmetric

tensor, we simply need to add to the massless result given in the previous section the result

for a massless spin-1 field. It is important to emphasize that such a sum — where we factor

all mass terms out of X, as described in the section 2.1 — makes sense only because in the

gauge we have chosen all particles share the same mass.

The result of this sum, for massive rank-2 tensor fields in n spacetime dimensions, is

tram(a0) =
Na

2
(n − 2)(n − 1)

tram(a1) = −Na

12
(n2 − 15n + 38)R

tram(a2) =
Na

360

[

(n2 − 33n + 272)RMNPQRMNPQ − (n2 − 183n + 1262)RMN RMN
]

+
Na

144
(n2 − 27n + 146)R2 − Na

60
(n2 − 13n + 32)¤R . (2.44)

Higher-rank antisymmetric tensors. The result for a higher-rank massless skew-

tensor gauge potential in n dimensions has been worked out in a similar fashion to the

above [10]. This leads to the following results for the first few Gilkey coefficients for a

massless 3-form gauge field (for n > 4 dimensions), specialized to Ricci-flat background

geometries (RMN = 0):

tr3a(a0) =
N3a

3!
(n − 2)(n − 3)(n − 4)

tr3a(a1) = 0

tr3a(a2) =
N3a

1080
(n3 − 54n2 + 971n − 4164)RMNPQRMNPQ . (2.45)

The analogous results for a massless 4-form gauge field (in n > 5 Ricci-flat dimensions) are

given by:

tr4a(a0) =
N4a

4!
(n − 2)(n − 3)(n − 4)(n − 5)

tr4a(a1) = 0

tr4a(a2) =
N4a

4320
(n4 − 74n3 + 2051n2 − 18634n + 52680)RMNPQRMNPQ . (2.46)

These results for massive 1- and 2-forms suggest a short-cut for extending our results

to the case of a massive p-form for arbitrary p, since they show that the Gilkey coefficients

for a massive p-form are obtained by summing the contributions of a massless (p− 1)-form

to that of a massless p-form. It can also be readily seen that the Gilkey coefficients for a
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massive spin-1 field are obtained by the replacement n → (n + 1) in the massless formulae,

and similarly for the antisymmetric 2-form. One way to see why this should give the correct

result is to reason as follows. It is clear that (for a Minkowski-space background) a massless

p-form in (n + 1) dimensions and a massive p-form in n dimensions share the same little

group, SO(n−1), and transform in the same representation of this group. This connection

can also be made more explicit by dimensionally reducing an (n + 1)-dimensional massless

p-form on S1 to obtain a Kaluza-Klein tower of massive p-forms in the lower-dimensional

theory. Each massive field is thereby seen to contain the spin content of an n-dimensional

massless p- and (p−1)-form. A final check on this reasoning can be had using the results of

ref. [10], which show that the first few Gilkey coefficients for a massless (n+1)-dimensional

p-form — and hence a massive n-dimensionsal p-form — are the same as the sum of the

coefficients for a massless p- and (p − 1)-form in n dimensions.

2.6 Spin 3/2

Before proceeding with spin-3/2 and spin-2 particles, we first pause to establish a few of

our supergravity conventions. Our starting point is the coupled Einstein/Rarita-Schwinger

system. We take the spin-2 field to be described by the standard Einstein-Hilbert action,

which in our conventions is

1

e
LEH = − 1

2κ2
R, (2.47)

with κ2 = 8πGN . For the moment, we do not include a cosmological term; the general-

ization of the massless and massive spin-3/2 particle to the case of a nonzero cosmological

constant is given in the appendix.

The spin-3/2 particle is described by a vector-spinor field, ψM , with a kinetic term

given by the lagrangian
1

e
LV S = −1

2
ψMΓMNP DNψP . (2.48)

As before, we use indices A,B, . . . for the tangent frame, M,N, . . . for world indices and

lower-case indices to label gauge-group generators. Conversion between tangent and world

indices is accomplished using the vielbein, eM
A. Here, ΓABC = 1

6 [ΓAΓBΓC+· · · ] and ΓAB =
1
2 [ΓA,ΓB ] are normalized completely antisymmetric combinations of gamma matrices.

The covariant derivative appearing in eq. (2.48) can involve background gauge fields

in addition to the Christoffel connection, but only if the corresponding gauge symmetry

does not commute with supersymmetry. Such transformations are particularly rich when

there is more than one supersymmetry in the problem. Gravitini cannot carry charges for

internal symmetries which commute with supersymmetry, because for these the gravitino

must share the charge of the graviton, which is neutral under all gauge transformations.

When there are no gauge fields in DMψN , it is straightforward to verify that the

combination LV S + LEH is invariant under the linearized supersymmetry transformations

δeA
M = −κ

4
ψMΓAε + c.c. , δψM =

1

κ
DM ε . (2.49)
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When background gauge fields are present in DMψN , the combination LV S + LEH varies

into terms involving these gauge fields. These terms then cancel against variations of the

gauge-field kinetic terms and with gauge-field-dependent terms in the gravitino transfor-

mation law. This shows that gauge fields for symmetries which do not commute with

supersymmetry are special in that they are intimately related to the gravitini by super-

symmetry.

Massless spin 3/2. In order to put the spin-3/2 lagrangian into a form for which the

general expressions for the Gilkey coefficients apply, it is convenient to use the following

gauge-averaging term,
1

e
L gf

V S = − 1

2 ξ3/2
(Γ · ψ) /D(Γ · ψ) . (2.50)

With this term, and after making the field redefinition ψM → ψM +AΓMΓ ·ψ, we find that

the lagrangian simplifies in the desired way when we make the following choices for A and

ξ3/2:

A =
1

2 − n
and

1

ξ3/2
=

2 − n

4
. (2.51)

These choices allow the vector-spinor lagrangian to be written as

1

e
(LV S + L gf

V S) = −1

2
ψM /DψM , (2.52)

and so give the one-loop contribution

iΣ =
1

2
log det

[

( /D)AB

]

=
1

4
log det

[

(− /D2)AB

]

. (2.53)

For a vector-spinor the Lorentz generators are

(JAB)CD = − i

2
ΓABδC

D − iI(δC
AηBD − δC

BηAD), (2.54)

where I is the N3/2 × N3/2 identity matrix, corresponding to the N3/2 = N3/2 d̃ (un-

written) non-vector components of ψM . (Recall d̃ = 2[n/2]+1/ζ, where ζ = 1, 2 and 4

for Dirac, Weyl (or Majorana) and Majorana-Weyl fermions.) Using the identity /D2 =

¤ + 1
4 [ΓM ,ΓN ][DM ,DN ], we find

[ /D2]AB =

(

¤ +
1

4
R − i

2
F a

CDΓCD ta

)

δA
B − 1

2
RA

BCDΓCD. (2.55)

For simplicity of notation, we have suppressed writing the various identity matrices that

appear in the above expression. From this we may read off the expression for X, given by

XA
B =

(

−1

4
R +

i

2
F a

CDΓCD ta

)

δA
B +

1

2
RA

BMNΓMN . (2.56)

Taking appropriate traces, we obtain the results

trV S(X) = − n

4
N3/2 R (2.57)
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trV S(X2) = N3/2

[

n

16
R2 +

1

2
RMNPQRMNPQ

]

+
nd̃g2

a

2
C(R3/2)F

a
MNFMN

a

trV S

(

YMNY MN
)

= −N3/2

(

1 +
n

8

)

RMNPQRMNPQ − nd̃g2
a C(R3/2)F

a
MNFMN

a .

R3/2 denotes, as usual, the Dynkin index for the representation of the gauge group carried

by the spin-3/2 fields.

Combining these results, and remembering to multiply (as for the spin-1/2 case)

eq. (2.5) by an overall factor of 1/2, we find

trV S(a0) =
n

2
N3/2

trV S(a1) =
n

24
N3/2R

trV S(a2) =
N3/2

360

[(

30 − 7n

8

)

RMNPQRMNPQ − nRMNRMN +
5n

8
R2 +

3n

2
¤R

]

+
nd̃g2

a

12
C(R3/2)F

a
MNFMN

a . (2.58)

We next consider the contribution from the ghost fields. From the supersymmetry

transformation rules, we see that δ(Γ · ψ) = 1
κ /D ε and so there are two bosonic, Faddeev-

Popov spinor ghosts with the lagrangian

1

e
LLV FPgh = −ωi /D ωi, (2.59)

where i = 1, 2 labels the two ghosts. Since this has the same form as the spin-1/2 lagrangian

used earlier, eq. (2.13), the Faddeev-Popov ghost result for tr[ak] is obtained by multiplying

the massless spin-1/2 result by −2.

In addition to the Faddeev-Popov ghosts, there is also a bosonic, Nielsen-Kallosh

ghost [21] coming from the use of the operator /D in the gauge-fixing lagrangian, eq. (2.50).

The Nielsen-Kallosh ghost lagrangian is given by

1

e
LLV NKgh = −η /D η . (2.60)

This ghost therefore has a contribution to tr[ak] given by −1 times the massless spin-1/2

result.

Adding the results for the Faddeev-Popov and Nielsen-Kallosh ghosts to that of the

vector-spinor, we obtain the following results for the contribution to tr[ak] by physical

massless spin-3/2 states:

tr3/2(a0) =
N3/2

2
(n − 3)

tr3/2(a1) =
N3/2

24
(n − 3)R

tr3/2(a2) =
N3/2

360

[(

30 − 7

8
(n − 3)

)

RMNPQRMNPQ − (n − 3)RMNRMN (2.61)

+
5

8
(n − 3)R2 +

3

2
(n − 3)¤R

]

+
d̃g2

a

12
(n − 3)C(R3/2)F a

MNFMN
a .
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Massive spin 3/2. A spin-3/2 state acquires a mass through the existence of an off-

diagonal coupling of the form χΓ ·ψ with a spin-1/2 Goldstone fermion state, χ. Choosing

a gauge for which this term vanishes causes the super-Higgs mechanism to occur, through

which the spin-3/2 particle ‘eats’ the fermion χ. Although χ vanishes in a unitary gauge,

it remains in the theory in a covariant gauge much as does the would-be Goldstone boson

for the massive spin-1 case.

To show explicitly how this process occurs, we assume that the part of the fermionic

lagrangian which is quadratic in the fluctuations has the general form4

1

e
LmV S = −ψMΓMNP DNψP − χ /Dχ −

[

ψ · Γ(a /D + b)χ + c.c.
]

−
(

cψMDMχ + c.c.
)

− m1/2 χχ − µ3/2 ψMψM

+m3/2ψMΓMNψN , (2.62)

where the parameters a, b, c, m1/2, m3/2, and µ 3/2 are constrained by demanding that

the action be invariant under linearized supersymmetry transformations. For simplicity we

assume these parameters to be real, although in general some or all of these parameters may

be complex, depending on whether the fermions are Majorana or Weyl in the supergravity

of interest. Requiring invariance under the supersymmetry transformations

δψM =
1

κ
DM ε + µΓMε and δχ = fε , (2.63)

then imposes the following constraints on the various parameters:

a = c = µ 3/2 = 0 b = κf f2 = (n − 1)(n − 2)µ2

m1/2 = nκµ m3/2 = (n − 2)κµ . (2.64)

This leaves one free parameter — which we can take to be µ, f , or b — having the physical

interpretation of being the supersymmetry breaking scale.

With these choices, the variation of the gravitino/goldstino lagrangian is

1

e
δLmV S =

1

2κ
GMNψMΓNε + c.c., (2.65)

where GMN = RMN − 1
2 R gMN is the Einstein tensor. This term is cancelled in the usual

way by the variation of the Einstein-Hilbert action under the graviton transformation

δe A
M = −κ

4
ψMΓAε + c.c.. (2.66)

To this lagrangian we add the gauge-fixing term

1

e
L gf

mV S = −F ( /D + γ)F, (2.67)

where

F = αΓ · ψ + βχ. (2.68)

4We follow here the approach of ref. [22] to identify the form of these couplings to quadratic order in a

model-independent way.
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The constants α, β, and γ are chosen to ensure that the gauge-fixed lagrangian has the

form
1

e
(LmV S + L gf

mV S) = −ψ
′
M ( /D + m′

3/2)ψ
′M − χ′( /D + m′

1/2)χ
′ (2.69)

where ψ′
M and χ′ are given by

χ′ = Aχ + BΓ · ψ and ψ′
M = ψM + CΓMΓ · ψ + DΓMχ , (2.70)

where we again take the parameters A, B, C, and D to be real for simplicity. Note that

the transformation of ψM is nonsingular provided C 6= −1/n. Using eq. (2.70) to evaluate

the right-hand side of eq. (2.69) while using eqs. (2.62), (2.64), and (2.67) to evaluate the

left-hand side, leads to the conditions

A =

(

n − 1

n − 2

)1/2

, B = C = −1

2
, D = 0, m′

3/2 = m′
1/2 = (n − 2)κµ,

α = −1

2

√
n − 1, β =

1√
n − 2

, γ = −(n − 2)κµ. (2.71)

The ghost action consists of a Nielsen-Kallosh ghost, with lagrangian

1

e
LmV SNK = −ω( /D + γ)ω, (2.72)

as well as two Faddeev-Popov ghosts, with lagrangian

1

e
LmV SFP = −ξi

[

/D + (n − 2)κµ
]

ξi , (2.73)

where i = 1, 2 labels the two ghosts. Dropping the primes, and defining m = (n − 2)κµ,

the complete lagrangian, eqs. (2.69), (2.72) and (2.73), becomes

1

e
Lm3/2 = −ψM ( /D + m)ψM − χ( /D + m)χ − ω( /D − m)ω − ξi( /D + m)ξi . (2.74)

Since the heat-kernel coefficents are even under m → −m, we see from this that ak for

a massive gravitino are given by the sum of the corresponding coefficients for a massless

gravitino (including ghosts) plus those of a massless fermion. Summing the massive spin-

1/2 result, eq. (2.16), with the spin-3/2 result, eq. (2.61), we obtain the following Gilkey

coefficients for a massive spin-3/2 particle

trm3/2(a0) =
N3/2

2
(n − 2)

trm3/2(a1) =
N3/2

24
(n − 2)R (2.75)

trm3/2(a2) =
N3/2

360

[(

30 − 7

8
(n − 2)

)

RMNPQRMNPQ − (n − 2)RMNRMN

+
5

8
(n − 2)R2 +

3

2
(n − 2)¤R

]

+
g2
a

12
(n − 2)d̃ C(R3/2)F

a
MNFMN

a .
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2.7 Spin 2

Finally, we turn to spin-2 particles. In order to maximize the utility of this section, we do

so for the case where the lagrangian includes a cosmological constant, as is typically true

for non-supersymmetric theories (and for supersymmetric theories in four dimensions), and

so start with the following action

1

e
LEH = − 1

2κ2
(R − 2Λ) . (2.76)

For situations where Λ represents the value of a scalar potential, V , evaluated at the

classical background, we see from the above that Λ = −κ2 V .

Although it is usually true that only a single spin-2 particle is massless in any given

model, we include a parameter N2 which counts the massive spin-2 states. We do so because

there is typically more than one massive spin-2 state in the models of interest, typically

arising as part of a Kaluza-Klein tower or as excited string modes.

Massless spin 2. The lagrangian for a massless rank-two symmetric field is the Einstein-

Hilbert action, eq. (2.76). As usual we write the metric as gMN + 2κhMN , where gMN

is the background metric and hMN are the fluctuations. Expanding to quadratic order in

these fluctuations, and adding the gauge-fixing term

1

e
L gf

EH = −
(

DMhMN − 1

2
DNhM

M

)2

, (2.77)

we obtain the standard result [9]

1

e
(LEH + Lgf

EH) =
1

2
hMN

[

¤hMN + (R − 2Λ)hMN − (hMAR A
N + hNAR A

M ) (2.78)

−2RMANBhAB
]

+ hMNRMNh − 1

4
h
[

¤h + (R − 2Λ)h
]

,

where h = gMNhMN .

It is useful to decouple the scalar, h, from the traceless symmetric tensor φMN =

hMN − 1
n h gMN , in this expression. In terms of these variables the lagrangian is

1

e
(LEH + L gf

EH) =
1

2
φMN

[

¤φMN + (R − 2Λ)φMN −
(

φMAR A
N + φNAR A

M

)

−2RMANBφAB
]

+

(

n − 4

n

)

φMNRMN h

−
(

n − 2

4n

)[

h¤h +

(

n − 4

n

)

R h2 − 2Λh2

]

, (2.79)

which shows that these fields decouple if we make the assumption that the background

metric is an Einstein space: RMN = 1
n R gMN . Although it seems restrictive, the assump-

tion that the background be an Einstein space is actually reasonably general due to the

observation that we lose no generality if we simplify the one-loop action by using the clas-

sical equations of motion. We are always free to do so because it is always possible to use

a field redefinition to remove any term in the one-loop action which vanishes when the
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classical equations are used [2].5 In the presence of a scalar potential, V , (or cosmological

constant, Λ = −κ2V ), the classical equations may often be written GMN + ΛgMN = 0, or

RMN = [2Λ/(n − 2)]gMN , and for any such a configuration our analysis applies.

With this assumption, and canonically normalizing the scalar mode by taking φ =

[(n − 2)/(2n)]1/2h, we arrive at the desired expression:

1

e
(LEH + L gf

EH) = −1

2
φMN

[

−¤ δ̄AB
MN + 2R A B

M N + (RA
MδB

N + RA
NδB

M )

−(R − 2Λ)δ̄AB
MN

]

φAB − 1

2
φ

[

¤ +

(

n − 4

n

)

R − 2Λ

]

φ, (2.80)

where δ̄MN
AB = 1

2(δM
A δN

B + δM
B δN

A )− 1
ngMNgAB is the unit matrix appropriate for a traceless

symmetric tensor. Notice the presence of the well-known ‘wrong’ sign for the kinetic term

of the scalar mode φ.

We may now separately compute the contributions of φ and φMN to the heat-kernel

coefficients, ak. From eq. (2.80), the symmetric traceless differential operator appropriate

for φMN is seen to be

∆MN
PQ = −

[

¤ + (R − 2Λ)
]

δ̄MN
PQ + (RM N

P Q + RN M
P Q) − 4

n
(gPQRMN + gMNRPQ)

+
1

2
(RM

P δN
Q + RN

P δM
Q + RN

Q δM
P + RM

Q δN
P ) +

4

n2
gMNgPQR , (2.81)

from which the expression for X can be read off directly. Taking traces of the relevant

quantities, we find

trsymtr(X) = N2

[

− 1

2n
(n + 2)(n2 − 3n + 4)R + (n + 2)(n − 1)Λ

]

trsymtr(X
2) = N2

[

3RMNPQRMNPQ +
1

n
(n2 − 2n − 32)RMNRMN

+
1

2n2
(n4 − 3n3 + 16n + 32)R2

− 2

n
(n + 2)(n2 − 3n + 4)ΛR + 2(n + 2)(n − 1)Λ2

]

trsymtr(YMNY MN ) = −N2(n + 2)RMNPQRMNPQ. (2.82)

Applying eq. (2.5), we arrive at the following expressions for tr[ak]:

trsymtr(a0) =
N2

2
(n + 2)(n − 1)

trsymtr(a1) = N2

[

1

12n
(n + 2)(5n2 − 17n + 24)R − (n + 2)(n − 1)Λ

]

trsymtr(a2) = N2

[

1

360
(n2 − 29n + 478)RMNPQRMNPQ

5Although it is always possible to simplify (without loss of generality) the one-loop action using the

classical equations — see below — by excluding things like scalar gradients or background F
a

MN this

assumption restricts the kinds of solutions to the classical equations we may entertain.
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− 1

360n
(n3 − 179n2 + 358n + 5760)RMN RMN

+
1

144n2
(25n4 − 95n3 + 22n2 + 480n + 1152)R2

+
1

30n
(n + 2)(2n2 − 7n + 10)¤R

− 1

6n
(n + 2)(5n2 − 17n + 24)ΛR + (n2 + n − 2)Λ2

]

. (2.83)

The scalar part of the spin-2 lagrangian is given by

1

e
LEHs =

1

2
φ

[

−¤ −
(

n − 4

n

)

R + 2Λ

]

φ, (2.84)

which, apart from an overall sign, has the same form as eq. (2.10) if we make the substi-

tution ξR → −
(

n−4
n

)

R + 2Λ. Since the overall sign of ∆ contributes a background-field-

independent phase to the action which is cancelled by a similar contribution from the ghost

action (see below), we may ignore it for the present purposes. With these comments in

mind, we may then use the previous results for spin-0 fields to compute the contribution

of φ to the Gilkey coefficients, ak.

Finally, we consider the ghosts for the graviton field. Since the gauge-fixing term is

fN = DMhMN − 1
2DNh, and the gauge transformations are δhMN = DM ξN + DN ξM , we

find the transformation property

δfN = ¤ ξN − RM
NξM , (2.85)

leading to a complex, fermionic, vector ghost ωM with lagrangian

1

e
L = −ω∗

M (−¤δM
N + RM

N )ωN . (2.86)

The contribution of the vector ghost to the Gilkey coefficients is therefore obtained by

multiplying the results found earlier for the real spin-1 field by an overall factor of −2 (and

using the choice η = −1 in eq. (2.22)). We thus obtain the result for the massless graviton

in n dimensions (for background Einstein geometries:6 RMN = (R/n) gMN )

tr2(a0) =
N2

2
n(n − 3)

tr2(a1) = N2

[

1

12
(5n2 − 3n + 24)R − n(n + 1)Λ

]

tr2(a2) = N2

[

1

360
(n2 − 33n + 540)RMNPQRMNPQ

+
1

720n
(125n3 − 497n2 + 486n − 1440)R2

−n

6
(5n − 7)ΛR + n(n + 1)Λ2

]

. (2.87)

6We drop ¤R in these expressions with only a tiny loss of generality because R is necessarily constant

for an Einstein space provided n > 2.
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Massive spin 2. We next derive the lagrangian for the massive graviton. In order to

do so we require an expression for the quadratic part of the massive spin-2 lagrangian,

such as might be obtained from a Kaluza-Klein reduction or as a massive string mode. To

keep the analysis as background-independent as possible, we work with the most general

such action for which the spin-2 state acquires its mass by mixing with the appropriate

Goldstone field, as in the Anderson-Higgs-Kibble mechanism. We believe that by making

this requirement we capture quite generally the contributions of the massive spin-2 states

which arise in dimensional reduction and as heavy string modes [26].

We start, therefore, with the lagrangian

1

e
LmEH =

1

e
LEH − 1

4
FMNFMN − ahMNDMVN − bV MDMh

−cRMNVMVN − 1

2
m2

1 VMV M − 1

2
m2

2 hMNhMN − 1

2
µ2

2 h2 , (2.88)

where the coefficients a, b, c, m1, m2 and µ2 are to be determined by demanding the

presence of a non-linearly realized gauge symmetry (which would correspond to the dif-

feomorphisms which do not preserve the background geometry within the Kaluza-Klein

context). FMN is the field strength DMVN − DNVM , where we take VM to have the spin

content of a massive spin-1 particle. From the previous sections we see that this should

consist of a specific combination of a massless vector field, AM , and a would-be Goldstone

scalar, σ. Accordingly, we make the definition

VM = AM + p DMσ , (2.89)

where the coefficient p is also to be determined in what follows. Notice that, as defined,

any lagrangian built from the vector field VM automatically has the gauge invariance

δAM = DM ε and δσ = −1

p
ε. (2.90)

If we desire we may use unitary gauge for this symmetry to remove σ completely from the

theory, however this is not a convenient gauge for our purposes and so in what follows we

instead gauge-fix using a more convenient covariant gauge.

In order to implement the underlying gauge invariance which any such a spin-2 field

must manifest we ask the above lagrangian to be invariant under the usual spin-2 gauge

transformation δhMN = DM ξN + DN ξM , supplemented by the Goldstone-type transfor-

mation δVM = fξM . This leads to the following lagrangian7

1

e
LmEH =

1

e
LEH − 1

4
FMNFMN + f hMNDMVN + f V MDMh

−RMNVMVN − 1

4
f2 hMNhMN +

1

4
f2 h2 , (2.91)

7As a check on this result, we note that by choosing the gauge where VM = 0, we recover the Pauli-Fierz

lagrangian of massive gravity [23]. Also, in flat space, this result agrees (after a suitable field redefinition)

with the one given in [24].
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corresponding to the choices

a = b = −f, c = 1,

m1 = 0,

and m2
2 = −µ2

2 =
f2

2
. (2.92)

We now fix the two gauge freedoms of this action in such a way as to remove the

mixings between the various fields having differing spins. To do so we take for the spin-2

gauge-fixing lagrangian
1

e
L gf

mEH2 = −
(

fN − 1

2
fVN

)2

, (2.93)

where f is the parameter appearing in the lagrangian (2.91), and as before fN is defined as

fN = DMhMN − 1
2DNh. This gauge choice removes the hMNDMVN term from the action

and introduces a mass term, m, for the vector field, VM , with m2 = 1
2f2.

To fix the other gauge freedom, eq. (2.90), we add the following gauge-fixing term

1

e
L gf

mEH1 = −1

2
(DMAM + λh + ρ σ)2, (2.94)

with λ and ρ being parameters which are chosen to remove the remaining vector-gravity

mixing terms in the quadratic action. In order to do so we again specialize to the case

where the background spacetime is an Einstein space, which we also take for simplicity

to be a solution to the Einstein equations of the form GMN + ΛgMN = 0, or RMN =

[2Λ/(n − 2)] gMN . Using this we see that the removal of cross terms between AM , hMN ,

and σ requires the choices

λ = −f

2
, and ρ = p q2, (2.95)

where q2 is defined as

q2 = m2 +
4Λ

n − 2
, (2.96)

since in this case the gauge-fixed lagrangian can be written as

LmEH + L gf
mEH1 + L gf

mEH2 = LmEH0 + LmEH1 + LmEH2 , (2.97)

with the decoupled lagrangians, LmEH0, LmEH1, and LmEH2, defined as follows.

LmEH2 denotes the φMN lagrangian, which takes the form

1

e
LmEH2 =

1

e
LEH − fNfN − 1

4
f2hMNhMN +

1

8
f2h2

= −1

2
φMN

(

∆MN
PQ + m2δ̄MN

PQ

)

φPQ

+

(

n − 2

4n

)

h

(

−¤ + m2 +
1

n
(4 − n)R + 2Λ

)

h

+

(

n − 4

n

)

RMNφMNh
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= −1

2
φMN

(

∆MN
PQ + m2δ̄MN

PQ

)

φPQ

+
1

2
φ

(

−¤ + m2 +
4Λ

n − 2

)

φ, (2.98)

where φ, φMN , δ̄MN
AB and ∆MN

PQ are as defined above for the massless spin-2 case. The

mass m is related to the symmetry-breaking parameter f by m2 = 1
2f2.

We similarly find the following vector lagrangian, LmEH1:

1

e
LmEH1 = −1

4
FMNFMN − 1

2
(DMAM )2 − RMNAMAN − 1

2
m2AMAM

= −1

2
AM

[

(−¤ + m2) δM
N + RM

N

]

AN , (2.99)

where m is the same as for φMN .

Finally, the part of the quadratic action depending on σ is

1

e
LmEH0 =

1

2

[

(pρ)σ¤σ − (pf)σ¤h − (ρ2)σ2 + (fρ)hσ
]

, (2.100)

which contains terms which mix σ and h. However, since p is as yet unspecified we may

choose its value to remove these cross terms. This may be done by choosing p = −f/(4q2)

and making the field redefinition σ̃ =
√

2m
4q (σ + 2h), after which we find

1

e
LmEH0 = −1

2
σ̃

(

−¤ + m2 +
4Λ

n − 2

)

σ̃

+

(

m2

4q2

)

h

(

−¤ + m2 +
4Λ

n − 2

)

h. (2.101)

Notice that in this form the last term in LmEH0 (involving h) has the same form as the last

term in LmEH2, and so these can both be combined into LmEH2 by appropriately rescaling

the scalar φ. Once this is done, and dropping the tilde on σ, the remaining term becomes

1

e
LmEH0 = −1

2
σ

[

−¤ + m2 +
4Λ

n − 2

]

σ. (2.102)

Finally, the action for the ghosts can be easily calculated from the gauge-fixing con-

ditions. The spin-2 gauge-fixing term introduces a complex, fermionic, vector ghost with

lagrangian
1

e
LmEHV gh = −ω∗

M

[

(−¤ + m2) δM
N + RM

N

]

ωN . (2.103)

Similarly, the spin-1 gauge-fixing term introduces a complex scalar ghost with lagrangian

1

e
LmEHSgh = −ω∗

(

−¤ + m2 +
4Λ

n − 2

)

ω. (2.104)

The complete lagrangian, including all ghosts, for the massive graviton is thus the sum

Lm2 = LmEH0 + LmEH1 + LmEH2 + LmEHSgh + LmEHV gh. (2.105)

– 24 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
8

We are now in a position to assemble the results for ak. To this end, notice that all fields

have been decoupled in the kinetic terms and all now have the same mass, m2 = 1
2f2.

This allows us to sum the separate contributions to ak from each of these fields. It is also

interesting to note that the scalar fields h, σ and the complex scalar ghost all have precisely

the same lagrangian, and so their net effect is to completely cancel one another in the one-

loop action. Similarly, the vector boson AM and the complex vector ghost also share the

same lagrangian, and so for our purposes these two together contribute the equivalent of

one real vector ghost.

In summary, the one-loop divergences for the massive graviton are given by the sum of

the divergences of a symmetric traceless field and one real vector ghost (for which η = −1).

Thus, we find

tr2m(a0) =
N2

2
(n + 1)(n − 2)

tr2m(a1) = N2

[

(6 − n)(n + 4)(n + 1)Λ

6(n − 2)

]

tr2m(a2) = N2

[

1

360
(n2 − 31n + 508)RMNPQRMNPQ

+
(5n4 − 7n3 − 248n2 − 596n − 1440)Λ2

180(n − 2)2

]

(2.106)

for n-dimensional massive gravitons on background metrics satisfying GMN + ΛgMN = 0.

3. Supergravity models

In supergravity theories the ultraviolet sensitivity of the low-energy theory is often weaker

than in non-supersymmetric models. This weaker sensitivity arises due to cancellations

between the effects of bosons and fermions in loops. The purpose of this section is to illus-

trate the utility of the previous section’s results by using them to exhibit this cancellation

explicitly for supergravities in various dimensions. Some of the results we obtain — par-

ticularly those for massless particles in higher-dimensional supergravities — are computed

elsewhere, and we use the agreement between these earlier calculations and our results as

a check on the validity of our computations.

We proceed by summing the above expressions over the particles appearing in the

appropriate supermultiplets. The result for the ultraviolet-sensitive part of the one-loop

action obtained by integrating out a supermultiplet is given by

ΣUV =
1

2

(

1

4π

)n/2 ∫

dnx
√−g

[n/2]
∑

k=0

∑

p

(−)F (p)mn−2k
p Γ(k − n/2) trp[ak] , (3.1)

where the sum on p runs over the elements of a supermultiplet. As is clear from this expres-

sion, it is the weighted sum
∑

p(−)F (p) mn−2k
p trp[ak] which is of interest in supersymmetric

theories.

In Minkowski space the strongest suppression of UV sensitivity arises when supersym-

metry is unbroken, in which case all members of a supermultiplet share the same mass (so
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that mp = m for all p). In this case, eq. (3.1) can be written as

ΣUV =
1

2

(

1

4π

)n/2 ∫

dnx
√−g

[n/2]
∑

k=0

mn−2k Γ(k − n/2) Tr[ak] , (3.2)

where

Tr[ak] ≡
∑

p

(−)F (p) trp[ak] (3.3)

is the relevant combination of heat-kernel coefficients for a supermultiplet. Since tr[a0]

simply counts the spin states of the corresponding particle type, the cancellation of the

leading UV sensitivity occurs for a mass-degenerate supermultiplet simply because each

supermultiplet contains equal numbers of bosons and fermions:

Tr[a0] =
∑

p

(−)F (p) trp[a0] = NB − NF = 0 . (3.4)

This ensures the absence of a dependence of the form mn in ΣUV .

The story is more complicated when there is a nonzero cosmological constant, and this

is due to the fact that mass itself is more delicate to define in de Sitter or anti-de Sitter

spacetimes. For Minkowski space mass can be defined for particle states as a Casimir

invariant of the Poincaré group, but this definition is no longer appropriate when Λ is

nonzero because Poincaré transformations are then not the relevant spacetime isometries.

Rather, for de Sitter space the relevant isometry group in four dimensions is SO(4, 1),

while the isometries of anti-de Sitter space fill out the group SO(3, 2). For these geometries

it only makes sense to inquire about the implications of unbroken supersymmetry for the

anti-de Sitter case. This is because supersymmetry is always broken in de Sitter spacetime,

whereas there is a supersymmetric generalization of SO(3, 2) for which one can find particle

supermultiplets which represent the unbroken supersymmetry.

In our previous calculations of the Gilkey coefficients we have defined m2 to be that

piece in the operator (−¤ + X) which is a constant for arbitrary background fields.8 We

nevertheless must still grapple with the above ambiguities as to the meaning of mass in de

Sitter and anti-de Sitter spacetimes, due to the freedom of absorbing into m2 contributions

coming from the background curvature for constant-curvature spacetimes. One can try to

restrict this freedom by demanding masslessness to correspond to conformal invariance or

(for higher-spin fields) to unbroken gauge invariance, bearing in mind that these choices

need not imply propagation along the light cone [25].

The upshot of this discussion is that it need not be true that all of the particles within

a supermultiplet share the same mass even when working about a supersymmetric AdS

background. In such cases one cannot pull a common mass out of the sum over particles

within a supermultiplet, as was done in going from eq. (3.1) to eq. (3.2).

To see this concretely, consider the specific example of a Wess-Zumino multiplet in

n = 4 spacetime dimensions expanded about a supersymmetric AdS background. Such a

8This statement requires appropriate modification in the case of spin 2, where we include a cosmological

constant term in the lagrangian.
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multiplet consists of a scalar, pseudoscalar, and spinor field: (S,P, χ), and taking the scalar

and pseudoscalar to have a conformal coupling parameter, ξ = −1/6, their mass terms can

be written as m2
S = m2 − δm2, m2

P = m2 + δm2 and m2
χ = m2. Unbroken supersymmetry

implies that these mass terms are related to one another by m2 = µ2Λ/12 and δm2 =

µΛ/6, where Λ is the AdS cosmological constant (which is positive in our conventions)

and µ is a dimensionless parameter which classifies the massive supersymmetric particle

representations. In this case, we find

∑

p

(−)F (p)m4
p trp[a0] = m4

S trS [a0] + m4
P trP [a0] − m4

χ trχ[a0] = 2 δm4 =
µ2Λ2

18

∑

p

(−)F (p)m2
p trp[a1] = m2

S trS [a1] + m2
P trP [a1] − m2

χ trχ[a1] = −2m2 Λ

3
= −µ2Λ2

18

∑

p

(−)F (p)m0
p trp[a2] = trS [a2] + trP [a2] − trχ[a2] =

R2
MNPQ

48
− Λ2

9
. (3.5)

The above complication keeps us from quoting general expressions for the sum of

the Gilkey coefficients over arbitrary supermultiplets in general dimensions, since for AdS

backgrounds these must be computed with the specific dependence of the relevant masses

on Λ. Notice however that last expression in eq. (3.5) contains no dependence on the

individual particle masses (since trp[a2] is multiplied by m0
p = 1). Terms which are only

present in the mass invariant piece of ΣUV , such as R2
MNPQ and F 2

MN , can be calculated

once and for all in a model-independent way because their coefficients do not depend on

the details of the particle masses involved. This we do in tables 12 and 15 for various

4D supermultiplets. As can be seen from the above example, however, calculating the

complete answer for ΣUV is not difficult once the individual particle masses are known.

Similar considerations hold for dimensions other than four, with some terms in ΣUV being

mass independent and others requiring more detailed knowledge of the particle spectrum

about a given background.

Equations of motion. In the remainder of this section we use the previous results to

compute the statistics-weighted sum of tr[a1] and tr[a2] over the particle content obtained

by linearizing various supergravity theories about different solutions to their classical field

equations. To this end we must evaluate results of the previous section at the solutions to

the relevant field equations,9 and sum over the relevant particle content describing these

fluctuations.

The field equations for a very broad class of supergravities become reasonably simple

once restricted only to background metrics, gauge fields and the scalar dilaton. These

equations may be derived from the action

S = −
∫

dnx
√−g

[

1

2
R +

1

2
∂Mφ∂Mφ + V (φ)

9Recall that we are always free to use the classical equations of motion to simplify any one-loop quantity

(like ΣUV ), because any one-loop term which vanishes with the classical field equations may be removed

from Σ by performing an appropriate field redefinition [1, 2].
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(−)F tr(a0) (−)F tr(a1) (−)F tr(a2)

1 1
3R 1

180R 2
MNPQ

1
495R2

a/s 3-form 84 21 219 84

gravitino (M) −128 −32 −368 −188

graviton 44 149 149 6884

Table 1: Gilkey coefficients for massless states in 11D, using RMN = (R/n)gMN .

+
1

4
eλφ F a

MNFMN
a +

1

2r!
eβφ HM1...Mr

HM1...Mr

]

, (3.6)

where λ and β are dimension- and supergravity-dependent numbers and V is a dimension-

and supergravity-dependent potential for the dilaton φ. Notice that we use units here for

which Newton’s constant satisfies κ = 1.

The simplest class of solutions to these equations are those for which the gauge fields

vanish, F a
MN = 0, and the dilaton is constant, ∂Mφ = 0, at a value for which V ′ = 0.

(More general solutions having nonzero background gauge fields, F a
MN , are also possible

and usually — but not always — require a non-constant background dilaton configuration

as well: ∂Mφ 6= 0.) In this case the field equations require the metric to be an Einstein

space, GMN + Λ gMN = 0, or

RMN =

(

2Λ

n − 2

)

gMN , (3.7)

where Λ = −V , evaluated at the vacuum configuration.

3.1 11D example

Eleven-dimensional supergravity has a particularly simple field content, consisting of a

vielbein (or metric), a gravitino, and an antisymmetric 3-form, and so provides a simple

starting example. Our purpose in this example is to compare with the known results

of ref. [10] as a check on our calculations.10 The contributions to some of the Gilkey

coefficients specialized to 11 dimensions are listed in table 1.

Because the theory has equal numbers of bosons and fermions, we have Tr(a0) = 0.

Because the background metric is Ricci flat, it also follows that Tr(a1) = 0 and Tr(a2) ∝
RMNPQRMNPQ. Summing the coefficients in table 1 then shows that

Tr11D(a2) =
∑

p

(−)F (p) trp(a2) =
1

180

[

219 − 368 + 149
]

R 2
MNPQ = 0 , (3.8)

in agreement with ref. [10].

The same result can also be obtained for geometries of the form M6×T5 without having

to use expressions for the contribution of a 3-form field, simply by truncating the 11D theory

10For the case of the graviton, the terms we find proportional to the Ricci scalar appear to differ with

those of [10]. However there is no discrepancy once we specialize to solutions of the equations of motion

because their analysis assumes that Λ = 0, and so their classical equations of motion require R = 0.
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(−)F tr(a0) (−)F tr(a1) (−)F tr(a2)

1 1
6R 1

180R 2
MNPQ

1
12g2

aF
2

MN

spin zero (ξ = 0) 1 −1 1 −
spin half (M-W) −8 −4 7 −16C(R1/2)

spin one 8 −2 −7 16 C(A)

a/s 2-form 28 8 28 −
a/s 3-form 56 34 191 −
a/s 4-form 70 50 310 −
gravitino (M-W) −56 −28 −191 −
graviton 35 247 155 −

Table 2: Gilkey coefficients for massless states in 10D. Terms in a2 involving only the Ricci tensor

or Ricci scalar are not explicitly displayed. Hyphens indicate quantities which do not arise and so

are not tabulated.

to 6D, such as would be obtained for the massless Kaluza-Klein spectrum by dimensionally

reducing on a 5-torus [10]. The 6D spectrum obtained in this way consists of: 1 graviton,

4 Weyl gravitini, 5 2-form potentials, 16 (1-form) gauge fields, 20 Weyl fermions, and 25

scalars which we take to be minimally coupled. Since in 6 dimensions a 3-form potential is

dual to a 1-form, the entire dimensionally-reduced field content can be handled using the

expressions given above. Summing the 6D results — given explicitly in table 4 below —

for this field content, and specializing to the case of a Ricci-flat 6D metric (with all gauge

field strengths vanishing, Fµν = 0), again gives the results Tr(a0) = Tr(a1) = Tr(a2) = 0.

3.2 10D examples

The supergravities of interest in 10 dimensions are those which arise as the low-energy limits

of heterotic, Type I, Type IIA and Type IIB string theories. Since results for the Gilkey

coefficients are known for each of these, we briefly consider them in turn. For convenience,

the specialization of the previous sections’ formulae to the case n = 10 is given in table 2.

(This table is also specialized to the choices C(R0) = C(R3/2) = 0, as is appropriate for

these 10D supergravities.)

Type IIA and IIB theories. The field content of the Type IIA theory is given by the

metric, gMN , two Majorana-Weyl gravitini having opposite chiralities, ψr
M , a 3-form gauge

potential, CMNP , a 2-form potential, BMN , a gauge potential, CM , two Majorana-Weyl

dilatini (with opposite chiralities), χr, plus a dilaton, φ. The dilaton potential vanishes,

Λ = −V = 0.

Summing the contributions of each field to the Gilkey coefficients, and evaluating at

Ricci-flat metrics with vanishing gauge potentials again gives the result Tr(a0) = Tr(a1) = 0

and

TrIIA(a2) =
1

180

[

155 − 2(191) + 191 + 28 − 7 + 2(7) + 1
]

R 2
MNPQ = 0 . (3.9)

This may also be understood using the vanishing of these quantities in 11 dimensions

because the Type IIA theory can be obtained by dimensionally reducing the 11D theory
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(−)F tr(a0) (−)F tr(a1) (−)F tr(a2)

1 1
30R 1

180R 2
MNPQ

1
12g2

aF
2

MN

spin zero (ξ = 0) 1 −5 1 −C(R0)

spin one-half (M) −16 −40 14 −32C(R1/2)

spin one 9 −15 −6 15C(A)

a/s 2-form 36 30 21 −
a/s 3-form 84 210 219 −
a/s 4-form 126 420 501 −
gravitino (M) −128 −320 −368 −256C(R3/2)

graviton 44 1142 149 −
Table 3: Gilkey coefficients for massive states in 10D. Terms in a2 involving only the Ricci tensor

or Ricci scalar are not explicitly displayed. Hyphens indicate quantities which do not arise and so

are not tabulated.

on a circle.

The field content of the Type IIB theory is obtained from the Type IIA theory by

giving the fermions the same — rather than opposite – chirality and by replacing the 1-

and 3-form potentials by a scalar (0-form), C, a 2-form, CMN , and a self-dual 4-form,

CMNPQ. For this theory the dilaton potential again vanishes so Λ = −V = 0. The

statistics-weighted sum of the Gilkey coefficients a0, a1 and a2 again vanishes for this field

content, as may be seen since

TrIIB(a2) =
1

180

[

155 − 2(191) +
1

2
(310) + 2(28) + 2(7) + 2(1)

]

R 2
MNPQ = 0 . (3.10)

Part of this result can again be understood in a different way, since the Type IIA and

IIB supergravities produce the same theory when dimensionally reduced on a 2-torus to

9 dimensions. Since we know from the above that the Type IIA theory gives Tr(a0) =

Tr(a1) = Tr(a2) = 0 for this kind of compactification, it follows that these quantities must

also vanish for Type IIB theories when evaluated on a 9-dimensional Ricci-flat background.

Heterotic and Type I theories. The field content of the Type I and heterotic theories

consist of a 10D N = 1 supergravity multiplet coupled to a 10D super-Yang-Mills multiplet

for the gauge groups E8 × E8 or SO(32), both of which are 496-dimensional.

The N = 1 supergravity multiplet in 10D consists of: one graviton gMN , one Majorana-

Weyl gravitino ψM , one 2-form potential BMN , one Majorana-Weyl spin-1/2 fermion χ and

a scalar dilaton φ. For Type I and heterotic models the 10D gauge multiplet consists of

NA gauge fields Aa
M and NA Majorana-Weyl spinors λa, where NA = 496 is the dimension

of the gauge group. These supergravities have vanishing dilaton potential, V = Λ = 0,

but are distinguished from one another by the value of the gauge-dilaton coupling, which

is given by λ = −4/(n− 2) = −1/2 for the heterotic theory, or λ = (n− 6)/(n− 2) = +1/2

for the Type I theory.

Specializing to backgrounds with vanishing gauge fields and constant dilaton field leads

to vacuum space-times for which RMN = 0. It is then simple to see that the contributions
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(−)F tr(a0) (−)F tr(a1) (−)F tr(a2) (−)F tr(a2)|ms

1 1
10Λ 1

360R 2
MNPQ

1
600Λ2 1

12g2
aF

2
MN

1
25Λ2

spin zero (ξ = 0) 1 −5 2 70 −C(R0) 3

spin zero (ξ = −1/5) 1 1 2 −2 −C(R0) 0

spin one-half (W) −4 −10 7 −55 −8C(R1/2) −2

spin one 4 10 −22 −170 20C(A) −8

a/s 2-form 6 30 132 420 − 23

gravitino (W) −12 −42 −219 1419 − 50

graviton 9 45 378 −2970 − −108

Table 4: 6D Results for Massless Fields, computed using RMN = 1

2
ΛgMN . The last column gives the

result if the spacetime is also maximally symmetric in 6 dimensions: RMNPQ = (Λ/10)(gMPgNQ −
gNP gMQ).

to the Gilkey coefficients of the gauge supermultiplet vanishes, with the coefficients of the

R 2
MNPQ and F 2

MN terms both cancelling between the gauge bosons and the gauginos. For

the gravity supermultiplet in these theories we also trivially have Tr(a0) = Tr(a1) = 0 and

TrI,het(a2) =
1

180

[

155 − 191 + 28 + 7 + 1
]

R 2
MNPQ = 0 , (3.11)

again in agreement with ref. [10].

3.2.1 Massive 10D fields

Massive 10D fields can arise in two ways in string theory. They can arise as KK modes in

the dimensional reduction of 11D supergravity on a circle or a line segment, or as massive

string modes within the usual 10D string theories. Indeed, these two ways are famously

believed to be equivalent [27]. The contributions to the heat-kernel coefficients from various

massive 10D fields are listed in table 3.

A simple example which uses these results is the contribution of a massive KK level

which arises when the 11D theory is compactified down to 10D on a circle. Writing the

10D indices as µ = 0, . . . , 9 and the 11th index as s, the 10D field content obtained by

dimensionally reducing in this case consists of the metric components (gµν , gµs and gss);

the gravitino components (ψµ and ψs); and the 3-form components (Cµνλ and Cµνs). From

the results of the previous sections we see that these have the same field content as a single

massive 10D spin-2 particle, a single massive 10D spin-3/2 particle and a single massive

3-form potential, and so

Tr10D−KK(a2) =
1

180

[

149 − 368 + 219
]

R 2
MNPQ = 0 . (3.12)

3.3 6D examples

In 6 dimensions there is a larger variety of supergravity theories possible than in 10 di-

mensions, and so in this case we present our results in terms of the various supermultiplets
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Multiplet Particle Content Number of States

Hyper 2 spin 0 + 1 (symp-W) spin 1/2 2B + 2F

Gauge 1 spin 1 + 2 (symp-W) spin 1/2 4B + 4F

Tensor 1 spin 0 + 2 (symp-W) spin 1/2 + 1 (anti) self-dual 2-form 4B + 4F

Gravitino 1 (symp-W) spin 1/2 + 2 spin 1 + 1 (symp-W) spin 3/2 8B + 8F

Graviton 1 self-dual 2-form + 2 (symp-W) spin 3/2 + 1 spin 2 12B + 12F

Table 5: Particle content of massless 6D supermultiplets.

Tr(a2)
1
48R 2

MNPQ
1
8g2

aF
2

MN

Hyper 1 −4C(Rh)

Gauge −2 8C(A)

Tensor 10 −
Gravitino −20 16C(R3/2)

Gravity 30 −
Table 6: 6D results for massless supermultiplets, assuming Λ = 0. It is assumed that the tensor

and graviton multiplets do not carry the charge to which the background gauge fields couple.

(−)F tr(a0) (−)F tr(a1) (−)F tr(a2) (−)F tr(a2)|ms

1 1
10Λ 1

360R 2
MNPQ

1
600Λ2 1

12g2
aF

2
MN

1
25Λ2

spin zero (ξ=0) 1 −5 2 70 −C(R0) 3

spin zero (ξ=−1/5) 1 1 2 −2 −C(R0) 0

spin one-half (symp) −4 −10 7 −55 −8C(R1/2) −2

spin one 5 5 −20 −100 19C(A) −5

a/s 2-form 10 40 110 250 − 15

gravitino (symp) −16 −80 −212 −220 −32C(R3/2) −18

graviton 14 0 358 −1870 − −63

Table 7: 6D Results for Massive Fields, with RMN = 1

2
ΛgMN . The last column gives the result if

the 6 dimensions are maximally symmetric.

which are encountered rather than attempting to independently list the most commonly-

occurring of the supergravities which are possible. Since the particle content of a super-

multiplet depends on whether or not the particles are massless or massive, we treat each

separately. Since we allow Λ 6= 0 in tables 4 and 7, in tabulating the Gilkey coefficients for

the gravitino we use the results from the appendix.

3.3.1 Massless multiplets

The contributions to the Gilkey coefficients which result for massless particles in 6 di-

mensions are listed in table 4, and the field content of the commonly occurring massless

supermultiplets for 6D supersymmetry are listed in table 5. For the case Λ = 0, the result-

ing nonzero heat-kernel coefficients for these multiplets are given in table 6. In this table
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Multiplet Field Equivalent

Gauge 16m (Am
M ,2ψm,3φm)

Gravitino 64m (ψm
M ,2Am

MN ,2Am
M ,4ψm,2φm)

Gravity 80m (gm
MN ,2ψm

M ,Am
MN ,3Am

M ,2ψm,φm)

Table 8: Massive representations of (2, 0) supersymmetry in 6 dimensions, labelled by their dimen-

sion. Note that the fermions in this table are not chiral and the 2-form potentials are not self-dual

or anti-self-dual. The superscript ‘m’ indicates the corresponding field describes a massive particle

(rather than massless).

Tr(a2)

R 2
MNPQ F 2

MN

Gauge 0 0

Gravitino 0 −
Gravity 0 −

Table 9: 6D results for massive supermultiplets, assuming Λ = 0. It is assumed that the tensor

and graviton multiplets do not carry the charge to which the background gauge fields couple.

we imagine that all of the particles in a given supermultiplet share the same charge for

the background gauge fields, which is true if the relevant gauge symmetries commute with

supersymmetry. Because of this choice we also take the 2-form, gravitino and gauge fields

to be neutral under the gauge symmetry.

3.3.2 Massive multiplets

For massive 6D particles, the contributions to the Gilkey coefficients found from the pre-

vious section are listed in table 7. The field content of the commonly-occurring massive

supermultiplets for 6D supersymmetry are also listed in table 8. The resulting heat-kernel

coefficients for these multiplets are then given in table 9 for the case Λ = 0. In this table

we imagine that all of the particles in a given supermultiplet share the same charge for

the background gauge fields, which is true if the relevant gauge symmetries commute with

supersymmetry. Because of this choice we also take the 2-form, gravitino and gauge fields

to be neutral under the gauge symmetry. Notice, in particular, how Tr(a2) vanishes for

these 6D massive multiplets provided the backgrounds are Ricci-flat (Λ = 0), as reported

in a companion paper [12].

3.4 4D examples

There are considerably more supergravity theories possible in 4 dimensions than 6, and so

we again list results as a function of the particle content of 4D supermultiplets. As for the

6D case this requires a separate discussion of the massless and massive cases. A summary

of the results of previous sections, specialized to Einstein geometries, RMN = Λ gMN is

given in table 10. Since we allow Λ to be nonzero, we use the results in the appendix to

tabulate the Gilkey coefficients for the gravitino.
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(−)F tr(a0) (−)F tr(a1) (−)F tr(a2) (−)F tr(a2)|ms

1 1
3Λ 1

720R 2
MNPQ

1
45Λ2 1

12g2
aF

2
MN

1
270Λ2

spin zero (ξ = 0) 1 −2 4 9 −C(R0) 58

spin zero (ξ = −1/6) 1 0 4 −1 −C(R0) −2

spin one-half (M) −2 −2 7 −3 −4C(R1/2) −11

spin one 2 8 −52 −12 22C(A) −124

a/s 2-form 1 −2 364 9 − 418

gravitino (M) −2 −18 −233 137 −4C(R3/2) 589

graviton 2 32 848 −522 − −2284

Table 10: 4D Results for Massless Fields, with RMN = ΛgMN . The last column specializes to the

maximally-symmetric case, which in 4D implies RMNPQ = (Λ/3)(gMPgNQ − gNPgMQ).

3.4.1 Massless multiplets

The field content of the usual massless supermultiplets for 4D supersymmetry are listed

in table 11. The corresponding nonzero heat-kernel coefficients for these multiplets are

given in table 12 for the case Λ = 0. If there is a nonzero cosmological constant, then as

discussed at the beginning of this section, there can be additional Λ-dependent terms. We

imagine that all of the particles in a given supermultiplet share the same charge for the

background gauge fields. As usual we also take the 2-form, gravitino and skew-tensor fields

to be neutral under the background gauge symmetry.

Although the contributions of 4D multiplets are typically nonzero, they often give zero

once they are summed over the particle content of a multiplet of extended supersymmetry.

For example, combining one gauge multiplet with 3 conformally-coupled (ξ = −1
6) matter

multiplets in the adjoint representation (Rm = A) gives the field content of N = 4 super-

Yang Mills theories. Specializing to flat space (Λ = 0) and summing the appropriate

entries in table 12 then reproduces the famous result Tr(a0) = Tr(a1) = Tr(a2) = 0 for this

combination.

3.4.2 Massive multiplets

Finally, the heat-kernel coefficients for massive 4D fields are given in table 13. These results

may then be assembled into massive representations of 4D supersymmetry, as listed in table

14. The corresponding heat-kernel coefficients for these multiplets are given in table 15,

assuming all members of the multiplet share the same mass (i.e., assuming Λ = 0). Again,

if Λ 6= 0, then there can be additional Λ-dependent terms which we do not follow. We take

all of the particles in a given supermultiplet to share the same charge for the background

gauge fields. The 2-form, gravitino and skew-tensor fields are taken to be neutral under

the background gauge symmetry.

4. Conclusions

This paper accomplishes several aims regarding one-loop contributions to the effective

action for a wide class of field theories in a variety of dimensions.
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Multiplet Particle Content Number of States

Matter 2 spin 0 + 1 (W) spin 1/2 2B + 2F

Gauge 1 spin 1 + 1 (W) spin 1/2 2B + 2F

Gravitino 1 spin 1 + 1 (W) spin 3/2 2B + 2F

Gravity 1 (W) spin 3/2 + 1 spin 2 2B + 2F

Table 11: Particle content for N = 1 massless supermultiplets in 4D.

Tr(a2)
1
48R 2

MNPQ
1
2g2

aF
2

MN

Matter 1 −C(Rm)

Gauge −3 3C(A)

Gravitino −19 −
Gravity 41 −

Table 12: Results for massless supermultiplets in 4D. For the case Λ 6= 0, there will be additional

Λ-dependent terms which we do not write.

(−)F tr(a0) (−)F tr(a1) (−)F tr(a2) (−)F tr(a2)|ms

1 1
3Λ 1

720R 2
MNPQ

1
45Λ2 1

12g2
aF

2
MN

1
270Λ2

spin zero (ξ=0) 1 −2 4 9 −C(R0) 58

spin zero (ξ=−1/6) 1 0 4 −1 −C(R0) −2

spin one-half (M) −2 −2 7 −3 −4C(R1/2) −11

spin one 3 6 −48 −3 21C(A) −66

a/s 2-form 3 6 312 −3 − 294

gravitino (M) −4 −16 −226 24 −8C(R3/2) −82

graviton 5 20 800 −435 − −1810

Table 13: 4D Results for massive fields, with RMN = ΛgMN . The last column specializes to

maximally-symmetric 4D background geometries.

First, we set up the quadratic part of the action for spins 0 through 2 in arbitrary

spacetime dimensions in a way which is useful for calculations. In particular, we set up

a covariant gauge for each spin which removes all mixings between fields that transform

differently under local Lorentz transformations. For massive particles we show how to

disentangle the higher-spin fields from their lower-spin would-be Goldstone counterparts.

We then use this formulation to compute the leading ultraviolet sensitivity which arises

within a loop of any such particle. We are able to do so because the gauge choice described

above allows us to use standard results for the heat-kernel coefficients for a broad class

of background fields. Finally, we tabulate these coefficients for some of the fields and

dimensions (4,6,10 and 11) of particular interest for applications.

We expect the generality of our expressions to be useful for a variety of future appli-

cations.
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Multiplet Particle Content Number of States

Matter 2 spin 0 + 1 (M) spin 1/2 2B + 2F

Gauge 1 spin 0 + 2 (M) spin 1/2 + 1 spin 1 4B + 4F

Gravitino 1 (M) spin 1/2 + 2 spin 1 + 1 (M) spin 3/2 6B + 6F

Gravity 1 spin 1 + 2 (M) Spin 3/2 + 1 spin 2 8B + 8F

Table 14: Particle content for massive N = 1 supermultiplets in 4D.

Tr(a2)
1
48R 2

MNPQ
1
2g2

aF
2

MN

Matter 1 −C(Rm)

Gauge −2 2C(A)

Gravitino −21 −
Gravity 20 −

Table 15: Results for massive supermultiplets in 4D. For the case Λ 6= 0, there will be additional

Λ-dependent terms which we do not write.
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A. Gravitini with Λ 6= 0

In this appendix we slightly generalize the treatment of massless and massive spin-3/2 par-

ticles given in the main text to include the possibility that the lagrangian density includes a

nonzero cosmological constant (or a nontrivial scalar potential once the background scalar

field equations are satisfied). As discussed in section 3, the nonzero cosmological constant

implies particles in a supermultiplet need no longer be degenerate in mass, and so we cal-

culate here how this effect plays out for the gravitino. For instance, this case arises in four

dimensions, where an anti-de Sitter (AdS) cosmological constant term in the action is not

precluded by supersymmetry itself. Even though the application of most interest is to four

dimensions, we carry the spacetime dimension n as a variable in this appendix in case more

general applications of the expressions derived here should become of interest.

Massless gravitino. In this case we take the spin-2 field to be described by the Einstein-

Hilbert action supplemented by the cosmological term, which in our conventions is

1

e
LEH = − 1

2κ2
(R − 2Λ) . (A.1)

Supersymmetry then requires the lagrangian density for the spin-3/2 particle to be de-

scribed by
1

e
LV S = −1

2

(

ψMΓMNP DNψP − m3/2ψMΓMNψN

)

, (A.2)
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where we shall see how the parameter m3/2 is related by supersymmetry to the cosmological

constant. The presence of this ‘mass’ term does not mean that supersymmetry is broken;

rather it is required in order to ensure that the gravitino/graviton action remains gauge

invariant.

The combined gravitino-graviton lagrangian is invariant under the linearized super-

symmetry transformations

δeA
M = −κ

4
ψMΓAε + c.c.

δψM =
1

κ

(

DM +
1

(n − 2)
m3/2ΓM

)

ε , (A.3)

provided m3/2 is related to Λ by

Λ =
2(n − 1)

(n − 2)
m2

3/2. (A.4)

Notice that for any n > 2 this requires Λ > 0, which in our conventions corresponds to

having anti-de Sitter space as the maximally-symmetric background solution. In 4D this

reduces to the standard result Λ4 = 3m2
3/2 [29].

To put the spin-3/2 lagrangian into a form for which the general expressions for the

Gilkey coefficients apply, we now use the gauge-averaging term

1

e
L gf

V S = − 1

2 ξ3/2
(Γ · ψ)( /D + γ)(Γ · ψ) . (A.5)

After making the field redefinition ψM → ψM +AΓMΓ·ψ, we find that the following choices

for A, ξ, and γ

A =
1

2 − n
, ξ−1

3/2 =
2 − n

4
, γ =

(

n

2 − n

)

m3/2 , (A.6)

lead to the an expression for the vector-spinor lagrangian given by

1

e
(LV S + L gf

V S) = −1

2
ψM ( /D + m3/2)ψ

M . (A.7)

Following the analogous procedure in the main text, we obtain the result for the vector-

spinor field in the presence of a cosmological constant:

trV S(a0) =
n

2
N3/2

trV S(a1) = nN3/2

(

1

24
R − 1

2
m2

3/2

)

trV S(a2) =
N3/2

360

[(

30 − 7n

8

)

RMNPQRMNPQ − nRMNRMN +
5n

8
R2 +

3n

2
¤R

]

+
nd̃g2

a

12
C(R3/2)F

a
MNFMN

a +
n

24
N3/2

(

−m2
3/2R + 6m4

3/2

)

(A.8)

with m2
3/2 defined by eq. (A.4).
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The ghost action may be read from the supersymmetry transformation rules, from

which we see that δ(Γ ·ψ) = 1
κ [ /D + n

n−2m3/2]ε, and so we find two bosonic, Faddeev-Popov

spinor ghosts with the lagrangian

1

e
LLV FPgh = −ωi

(

/D +
n m3/2

n − 2

)

ωi. (A.9)

This has the same form as the spin-1/2 lagrangian, eq. (2.13), although with a Λ-dependent

mass. In order to use this we require the following spin-1/2 results for the Gilkey-DeWitt

coefficients quoted in the main text, generalized to include the fermion mass, m2, inside X:

tr1/2(a0) =
N1/2

2

tr1/2(a1) =
N1/2

24
(R − 12m2)

tr1/2(a2) =
N1/2

360

[

−7

8
RMNPQRMNPQ − RMNRMN +

5

8
(R − 12m2)2 +

3

2
¤R

]

+
d̃g2

a

12
C(R1/2)F

a
MNFMN

a . (A.10)

The Faddeev-Popov ghost result for tr[ak] is then obtained by multiplying these expressions

by −2, and specializing to the ‘mass’ m = n m3/2/(n − 2).

The use of the operator ( /D + γ) in the gauge-fixing lagrangian, eq. (A.5), leads to a

bosonic, Nielsen-Kallosh ghost. Rewriting γ in terms of m3/2, we see that the Nielsen-

Kallosh ghost has the lagrangian

1

e
LLV NKgh = −ω

(

/D − n m3/2

n − 2

)

ω. (A.11)

This ghost therefore contributes −1 times the spin-1/2 result to tr[ak], with m =

−nm3/2/(n − 2).

Adding the vector-spinor result together with its associated ghosts, we obtain the

following contribution to tr[ak] by physical spin-3/2 states in the presence of a cosmological

constant:

tr3/2(a0) =
N3/2

2
(n − 3)

tr3/2(a1) =
N3/2

24

(

(n − 3)R − 6n(n2 − 7n + 4)

(n − 1)(n − 2)
Λ

)

tr3/2(a2) =
N3/2

360

[(

30 − 7

8
(n − 3)

)

RMNPQRMNPQ − (n − 3)RMNRMN

+
5

8
(n − 3)R2 +

3

2
(n − 3)¤R − 15n(n2 − 7n + 4)ΛR

2(n − 1)(n − 2)

+
45n(n4 − 11n3 + 24n2 − 32n + 16)Λ2

2(n − 1)2(n − 2)2

]

+
d̃g2

a

12
(n − 3)C(R3/2)F a

MNFMN
a . (A.12)
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Massive gravitino. This section follows closely the procedure outlined in the massive

spin-3/2 section of the main text. Starting from eq. (2.62), which was our ansatz for a

massive spin-3/2 lagrangian, we again find that this lagrangian can be made invariant

under the supersymmetry transformations

δψM =
1

κ
DM ε + µΓMε and δχ = fε . (A.13)

In this case, however, f is given by

f2 = (n − 1)(n − 2)µ2 − Λ

2κ2
, (A.14)

while all other equations in eq. (2.64) remain unchanged. The dependence of f on Λ is

required in order to cancel the variation of the Λ term in the Einstein-Hilbert action.

Again, following the procedure of the main text, we add a gauge-fixing term, eq. (2.67),

and perform a field redefinition, eq. (2.70), in order to put the lagrangian into the form

1

e
(LmV S + L gf

mV S) = −ψ
′
M ( /D + m′

3/2)ψ
′M − χ′( /D + m′

1/2)χ
′. (A.15)

The parameters in the gauge-fixing lagrangian and in the field redefinitions can be written

in terms of M and M̂ , defined as

M = (n − 2)κµ and M̂ =

√

M2 +
2Λ

n − 2
. (A.16)

With these definitions, we find

A =
√

1 + β 2, B = −β

2

√
n − 2, C = −1

2
, D = 0,

α = −1

2

√

(n − 2)(1 + β 2), β =

[

1

2

(

n

n − 2

)

M

M̂
− 1

2

]1/2

,

m′
1/2 = −γ = M̂, m′

3/2 = M. (A.17)

For the case Λ = 0, these expressions reduce to those given in eq. (2.71). There is a possible

subtlety in the above solution, which comes about because of our simplifying assumption

to take all free parameters to be real. We see that for certain choices of M and Λ, it’s

possible that some of the parameters will be imaginary. However, in the situations for

which our results apply we expect that M À |Λ|, and so in these cases this problem will

not arise.

From the gauge-fixing condition, we see that there are two Faddeev-Popov ghosts, each

with mass M̂ , and one Nielsen-Kallosh ghost, with mass −M̂ . The one loop effective action

for the ghosts is thus given by

iΣ1/2 =
1

4
Tr log

(

M̂2 − /D2
)

=
1

4
Tr log

(

M2 +
2Λ

n − 2
− /D2

)

. (A.18)
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As usual, we factor the M2 dependence out of our definition of X, and so obtain

X = −1

4
R +

i

2
ΓABF a

ABta +
2Λ

n − 2
. (A.19)

The contribution to the Gilkey coefficients coming from the three ghosts is thus obtained

by multiplying eq. (A.10) by −3, with m2 = 2Λ/(n − 2). Similarly, the Goldstone fermion

contribution is also given by eq. (A.10), again with m2 = 2Λ/(n − 2). The contribution

from the vector spinor is unchanged from the massless case considered in the main text, and

so its Gilkey coefficients are given by eq. (2.58). Summing these results, we arrive at the

expression for a massive gravitino in a background spacetime having nonzero cosmological

constant:

trm3/2(a0) =
N3/2

2
(n − 2)

trm3/2(a1) =
N3/2

24

(

(n − 2)R +
48Λ

n − 2

)

trm3/2(a2) =
N3/2

360

[(

30 − 7

8
(n − 2)

)

RMNPQRMNPQ − (n − 2)RMNRMN

+
5

8
(n − 2)R2 +

3

2
(n − 2)¤R +

60ΛR

(n − 2)
− 720Λ2

(n − 2)2

]

+
g2
a

12
(n − 2)d̃ C(R3/2)F

a
MNFMN

a . (A.20)
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